A Coding Transformation for Temporally Structured Sounds within Auditory Cortical Neurons
نویسندگان
چکیده
Although the coding transformation between visual thalamus and cortex has been known for over 50 years, whether a similar transformation occurs between auditory thalamus and cortex has remained elusive. Such a transformation may occur for time-varying sounds, such as music or speech. Most subcortical neurons explicitly encode the temporal structure of sounds with the temporal structure of their activity, but many auditory cortical neurons instead use a rate code. The mechanisms for this transformation from temporal code to rate code have remained unknown. Here we report that the membrane potential of rat auditory cortical neurons can show stimulus synchronization to rates up to 500 Hz, even when the spiking output does not. Synaptic inputs to rate-coding neurons arose in part from temporal-coding neurons but were transformed by voltage-dependent properties and push-pull excitatory-inhibitory interactions. This suggests that the transformation from temporal to rate code can be observed within individual cortical neurons.
منابع مشابه
Active engagement improves primary auditory cortical neurons' ability to discriminate temporal modulation.
The effect of attention on single neuron responses in the auditory system is unresolved. We found that when monkeys discriminated temporally amplitude modulated (AM) from unmodulated sounds, primary auditory cortical (A1) neurons better discriminated those sounds than when the monkeys were not discriminating them. This was observed for both average firing rate and vector strength (VS), a measur...
متن کاملBetween sound and perception: reviewing the search for a neural code.
This review investigates the roles of representation, transformation and coding as part of a hierarchical process between sound and perception. This is followed by a survey of how speech sounds and elements thereof are represented in the activity patterns along the auditory pathway. Then the evidence for a place representation of texture features of sound, comprising frequency, periodicity pitc...
متن کاملNeural representations of temporally asymmetric stimuli in the auditory cortex of awake primates.
The representation of rapid acoustic transients by the auditory cortex is a fundamental issue that is still unresolved. Auditory cortical neurons have been shown to be limited in their stimulus-synchronized responses, yet the perceptual performances of humans and animals in discriminating temporal variations in complex sounds are better than what existing neurophysiological data would predict. ...
متن کاملNeural codes formed by small and temporally precise populations in auditory cortex.
The encoding of sensory information by populations of cortical neurons forms the basis for perception but remains poorly understood. To understand the constraints of cortical population coding we analyzed neural responses to natural sounds recorded in auditory cortex of primates (Macaca mulatta). We estimated stimulus information while varying the composition and size of the considered populati...
متن کاملNeurons with stereotyped and rapid responses provide a reference frame for relative temporal coding in primate auditory cortex.
The precise timing of spikes of cortical neurons relative to stimulus onset carries substantial sensory information. To access this information the sensory systems would need to maintain an internal temporal reference that reflects the precise stimulus timing. Whether and how sensory systems implement such reference frames to decode time-dependent responses, however, remains debated. Studying t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 86 شماره
صفحات -
تاریخ انتشار 2015